Data Science

Introduction
Data Science, the science of extracting meaningful and useful information from large data sets, is a field that is developing fast. The subject is, by its inherent nature, highly interdisciplinary. There is a rapidly growing demand for data scientists in many sectors, including digital advertising, actuarial research, customized health services, genomics, image analysis, image and speech recognition, and online map and navigation services.

Prerequisites
The following courses are prerequisites for the required courses in the Data Science major:
- CSE 1010 Introduction to Computing for Engineers
- CSE 1729 Introduction to Principles of Programming
- MATH 1131Q Calculus I (or MATH 2141Q)
- MATH 1132Q Calculus II (or MATH 2142Q)

Required Courses
Your individualized major must include at least 36 credits of 2000-level or higher courses, 18 of which must be from the College of Liberal Arts and Sciences. The following must be part of the plan of study:

- MATH 2210Q Applied Linear Algebra
- STAT 3025Q Statistical Methods
- STAT 3115Q Analysis of Experiments
- CSE 2050 Data Structures and Object-Oriented Design
- CSE 2102 Introduction to Software Engineering
- CSE 2500 Introduction to Discrete Systems
- UNIV 4697W Senior Thesis. A major component of this program is a three-credit, final-year capstone project, which incorporates real data science problems, requiring integration of statistics, mathematics, computing, domain knowledge, as well as soft skills such as collaboration and communication.

 Writing course. A writing intensive course that is relevant to the major theme. This will normally be designated “W” in the course catalog and is in addition to the thesis.

Electives
In addition to the required courses above, the plan of study must include 15 credits of electives. At least six credits of these must be from a domain science – a scientific domain in which “big data” is used. There are many options for domain sciences; below are three examples:
- For the domain of economics: ECON 2311Q Econometrics I and ECON 2312Q Econometrics II.
- For the domain of actuarial science: MATH 2620 Financial Mathematics I and MATH 3630 Long-Term Actuarial Mathematics I.
- For the domain of bioinformatics: CSE 3800 Bioinformatics, MCB 3421 Intro to Molecular Evolution and Bioinformatics.
Course List
The following is a list of courses that may be relevant to a major in Data Science. **Please note** that this is not a complete list – you may find other relevant courses in the catalog.

CSE
2300W Digital Logic Design
3100 Systems Programming
3500 Algorithms and Complexity
3666 Introduction to Computer Architecture
3800 Bioinformatics
3802 Numerical Methods in Scientific Computation
4300 Operating Systems
4502 Big Data Analytics
4701 Principles of Databases
4705 Artificial Intelligence
4820 Intro to Machine Learning

MCB
3421 Introduction to Molecular Evolution and Bioinformatics
For qualified students there is additional relevant coursework at the graduate level.

EEB
4100 Big Data Science for Biologists

ECON
2311Q Econometrics I
2312Q Econometrics II
2326 Operations Research
3313 Elementary Economic Forecasting
3315 Financial Econometrics

Both or one of the following are prerequisites for 3000-level courses and are also useful for students with economics as a domain science:
2211Q or 2201 Intermediate Microeconomics
2212Q or 2202 Intermediate Macroeconomics

For qualified students there is additional relevant coursework at the graduate level.

OPIM
3801 Business Information Systems
3802 Data and Text Mining
3804 Data Visualization

STAT
3375Q Introduction to Mathematical Statistics I
3445 Introduction to Mathematical Statistics II
3515Q Design of Experiments
3675Q Statistical Computing
4185 Special Topics: Intro to Data Science
4625 Intro to Biostatistics
4825 Applied Time Series

MATH
2620 Financial Mathematics I
3160 Probability
3370 Differential Geometry
3510 Numerical Analysis I
3620 Foundations of Actuarial Science
3630 Long-Term Actuarial Mathematics I