Data Science

Introduction
Data Science, the science of extracting meaningful and useful information from large data sets, is a field that is developing fast. The subject is, by its inherent nature, highly interdisciplinary. There is a rapidly growing demand for data scientists in many sectors, including digital advertising, actuarial research, customized health services, genomics, image analysis, image and speech recognition, and online map and navigation services.

Prerequisites
The following courses are prerequisites for the required courses in the Data Science major:
- CSE 1010 Introduction to Computing for Engineers
- CSE 1729 Introduction to Principles of Programming
- MATH 1131Q Calculus I (or MATH 1151Q)
- MATH 1132Q Calculus II (or MATH 1152Q or MATH 2142Q)

Required Courses
Your individualized major must include at least 36 credits of 2000-level or higher courses, 18 of which must be from the College of Liberal Arts and Sciences. The following must be part of the plan of study:

- **MATH 2210** Applied Linear Algebra
- **STAT 3025Q** Statistical Methods
- **STAT 3115Q** Analysis of Experiments
- **CSE 2050** Data Structures and Object-Oriented Design
- **CSE 2102** Introduction to Software Engineering
- **CSE 2500** Introduction to Discrete Systems
- **UNIV 4697W** Senior Thesis. A major component of this program is a three-credit, final-year capstone project, which incorporates real data science problems, requiring integration of statistics, mathematics, computing, domain knowledge, as well as soft skills such as collaboration and communication.

Writing course. A writing intensive course that is relevant to the major theme. This will normally be designated “W” in the course catalog and is in addition to the thesis.

Electives
In addition to the required courses above, the plan of study must include 15 credits of electives. At least six credits of these must be from a domain science – a scientific domain in which “big data” is used. Below are three examples.
- For the domain of economics: ECON 2311 Empirical Methods in Economics and ECON 2312 Empirical Methods in Economics II (prerequisites for these courses are ECON 1200 or both ECON 1201 and 1202).
- For the domain of actuarial science: MATH 2610 Introduction to Actuarial Science and MATH 3630 Actuarial Mathematics I.
- For the domain of bioinformatics: CSE 3800 Bioinformatics, MCB 3421 Intro to Molecular Evolution and Bioinformatics (prerequisite 2000-level MCB course)
Course List
The following is a list of courses that may be relevant to a major in Data Science. Please note that this is not a complete list – you may find other relevant courses in the catalog.

CSE
- 3100 Systems Programming
- 3500 Algorithms and Complexity
- 3666 Introduction to Computer Architecture
- 3800 Bioinformatics
- 3802 Numerical Methods in Scientific Computation
- 4095 Special Topics in CSE: Machine Learning
- 4502 Big Data Analytics
- 4300 Operating Systems
- 4701 Principles of Databases

MCB
- 3421 Introduction to Molecular Evolution and Bioinformatics
- 3637 Practical Methods in Microbial Genomics
- 3602W Introduction to Bioinformatic Tools for Microbial Genome Annotation

For qualified students there is additional relevant coursework at the graduate level.

EEB
- 4100 Big Data Science for Biologists

ECON
- 2311 Empirical Methods in Economics
- 2312 Empirical Methods in Economics II
- 3313 Elementary Economic Forecasting
- 3315 Financial Econometrics

Both or one of the following are prerequisites for 3000-level courses and are also useful for students with economics as a domain science:
- 2211Q or 2201 Intermediate Microeconomics
- 2212Q or 2202 Intermediate Macroeconomics

For qualified students there is additional relevant coursework at the graduate level.

MATH
- 2610 Introduction to Actuarial Science
- 3160 Probability
- 3370 Differential Geometry
- 3510 Numerical Analysis I
- 3630 Actuarial Mathematics I

OPIM
- 3802 Data and Text Mining

STAT
- 3375Q Introduction to Mathematical Statistics I
- 3445 Introduction to Mathematical Statistics II
- 3515Q Design of Experiments
- 3675Q Statistical Computing
- 4185 Special Topics: Intro to Data Science
- 4825 Applied Time Series